Expressions, Adding/Subtracting, and Word Problems with Numbers in Scientific Notation

Tuesday: $\sqrt{ } 81 / \sqrt{ } 81+\sqrt{ } 81$
> Do Now:

1. Solve. $\left(6.5 \times 10^{-6}\right)\left(4.5 \times 10^{9}\right)$
2. Solve. $\frac{\left(5.6 \times 10^{12}\right)}{\left(10.5 \times 10^{5}\right)}$

Math Investigation

- You will work in your table group.
- Together, you will work together to try to solve the problem given to you.
- You may use your notes and your teammates
- Together, you CAN solve the problem - Use your rules of exponents to help you!
- I will be cycling around to monitor your progress and check your final answers.

Example 1:
$\frac{\left(2 \times 10^{-3}\right)\left(3 \times 10^{7}\right)}{\left(2 \times 10^{-8}\right)}$

Example 2:

$\frac{\left(6 \times 10^{4}\right)\left(2 \times 10^{7}\right)}{\left(4 \times 10^{10}\right)}$
\qquad

Example 3:	Example 4:
$\frac{\left(7 \times 10^{-12}\right)\left(1 \times 10^{6}\right)}{\left(14 \times 10^{-8}\right)}$	$\frac{\left(5 \times 10^{-9}\right)\left(6 \times 10^{7}\right)}{\left(3 \times 10^{5}\right)}$
Example 5:	Example 6:
$\frac{\left(8 \times 10^{5}\right)\left(4 \times 10^{-10}\right)}{\left(8 \times 10^{9}\right)}$	$\frac{\left(5 \times 10^{-17}\right)\left(4 \times 10^{-10}\right)}{\left(2 \times 10^{5}\right)}$
Example 7:	Example 8:
$\frac{\left(9 \times 10^{-7}\right)\left(4 \times 10^{14}\right)}{\left(6 \times 10^{4}\right)}$	$\frac{\left(5.6 \times 10^{-7}\right)\left(3.6 \times 10^{14}\right)}{\left(5 \times 10^{4}\right)}$
Example 9:	Example 10:
$\frac{\left(6.4 \times 10^{5}\right)\left(2.9 \times 10^{12}\right)}{\left(9.8 \times 10^{5}\right)}$	$\frac{\left(4.8 \times 10^{8}\right)\left(3.9 \times 10^{4}\right)}{\left(7 \times 10^{3}\right)}$

\qquad
\square

Let's check our work by going through the first 3 examples together.

Simplifying Expression in Scientific Notation (Step by Step)

Example 1: $\frac{\left(2 \times 10^{-3}\right)\left(3 \times 10^{7}\right)}{\left(2 \times 10^{-8}\right)}$
First, we take care of the numerator.

- Multiply the factor 1 numbers: $2 \times 3=$ \qquad
- Multiply factor 2 numbers by adding exponents: $10^{-3} \times 10^{7}=$ \qquad
- Combine both factors to get your product: \qquad

Second, divide your new product by the denominator.

- Your new problem is:
- Divide factor 1 numbers: \qquad
- Divide factor 2 numbers by subtracting exponents: $10^{(4-(-8))}=$ \qquad
\qquad

Last, combine your factors.

- Final answer: \qquad

Example 2: $\frac{\left(6 \times 10^{4}\right)\left(2 \times 10^{7}\right)}{\left(4 \times 10^{10}\right)}$

First, we take care of the numerator.

- Multiply the factor 1 numbers: $6 \times 2=$
- Multiply factor 2 numbers by adding exponents: $10^{4} \times 10^{7}=$ \qquad
- Combine both factors to get your product: \qquad
Second, divide your new product by the denominator.
- Your new problem is:
- Divide factor 1 numbers: $12 \div 4=$ \qquad
- Divide factor 2 numbers by subtracting exponents: $10^{(11-10)}=$ \qquad Last, combine your factors.
- Final answer: \qquad
\qquad

$$
\text { Example 3: } \frac{\left(7 \times 10^{-12}\right)\left(1 \times 10^{6}\right)}{\left(14 \times 10^{-8}\right)}
$$

First, we take care of the numerator.

- Multiply the factor 1 numbers: $7 \times 1=$ \qquad
- Multiply factor 2 numbers by adding exponents: $10^{-12} \times 10^{6}=$ \qquad
- Combine both factors to get your product: \qquad

Second, divide your new product by the denominator.

- Your new problem is:
- Divide factor 1 numbers: $7 \div 14=$ \qquad
- Divide factor 2 numbers by subtracting exponents: $10^{(-6-(-8))}=$ \qquad Last, combine your factors.
- Final answer: \qquad
- CORRECT SCIENTIFIC NOTATION ANSWER:

```
Wednesday: (\sqrt{}{}9\mp@subsup{)}{}{2}/\sqrt{}{}361/\sqrt{}{}16+\sqrt{}{}64
> Do Now:
1) Simplify. \(\frac{\left(4.6 \times 10^{3}\right)\left(3.2 \times 10^{7}\right)}{\left(7 \times 10^{9}\right)}\)
```

2) Write the steps to the problem you just solved above.
\qquad
$>$ Adding and Subtracting Numbers in Scientific Notation
Examples of when we would need to add and subtract numbers in scientific notation:

There are 2 methods to add and subtract numbers in scientific notation:
Example 1: $\quad\left(6.89 \times 10^{4}\right)+\left(9.24 \times 10^{5}\right)$

Method One:

1. Convert all numbers into \qquad .

- $6.89 \times 10^{4}=$
- $9.24 \times 10^{5}=$

2. Complete the operation indicated to solve.
\qquad

Example 2: $\quad\left(6.89 \times 10^{4}\right)+\left(9.24 \times 10^{5}\right)$

Method Two:

1. Check to see if the powers of 10 have the \qquad .
2. Convert numbers to the same by power of 10 by

- $6.89 \times 10^{4}=6.89 \times 10^{4}$
- $9.24 \times 10^{5}=I$ want the power to be 4 , so I need to subtract 1 from the exponent. When I subtract I move the decimal right. =

3. \qquad and keep the power of ten to solve.

- $92.4+9.89=$

4. \qquad to proper scientific notation form.

- $\quad 99.29 \times 10^{4}=$

