
Name: G8: Notes #1 – Transformational Geometry -Trans	Date: lations Class:	
A <u>transformation</u> is a change in the,	, or	of a figure.
A translation is a transformation which in the same	_ each point of a figure the same _	and
The resulting figure after a transformation is called the	e of the original figure	

EXAMPLE 1:

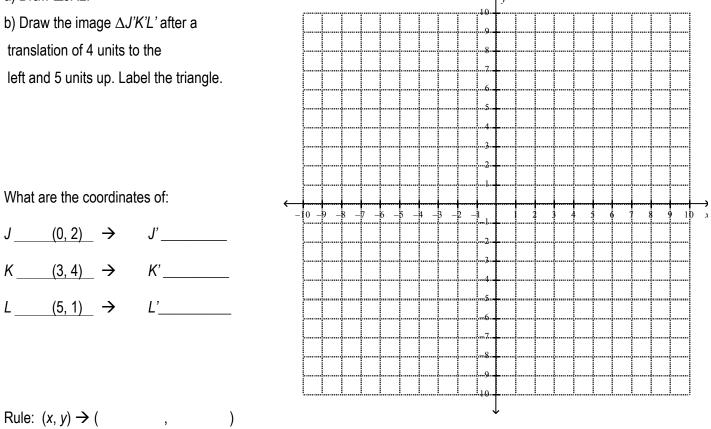
 $\triangle ABC$ is translated 1 unit right and 4 units up. Draw the image $\triangle \underline{A'B'C'}$.

What are the coordinates of:

- $A (1, -3) \rightarrow A'_{------}$
- $B_{(3,0)} \rightarrow B'_{------}$
- $C_{(4, -2)} \rightarrow C'_{(4, -2)}$

From EXAMPLE 1, $\triangle ABC \rightarrow \triangle A'B'C'$

As a general rule this translation could be written as $(x, y) \rightarrow (x + __, y + __)$.


Name:		
G8: Not	otes #1 – Transformational Geometry -Transla	tions

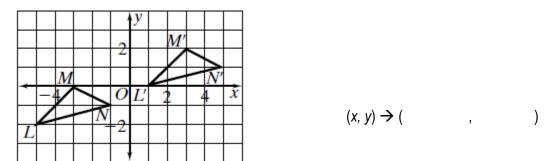
Date:	
Class: _	

EXAMPLE 2:

 ΔJKL has coordinates J (0,2), K (3,4), and L (5,1).

a) Draw ΔJKL .

Tell me more about this figure, is it congruent or similar? Explain how you know.

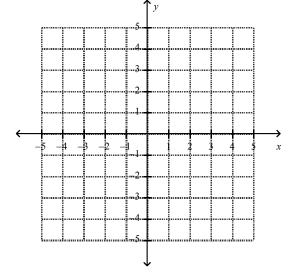

Translation Location		
	Add	Subtract
x coordinate		
y coordinate		

Name:
G8: Notes #1 – Transformational Geometry -Translations

Date:	
Class:	_

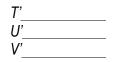
EXAMPLE 3:

Write a general rule which describes the translation shown below. ΔLMN is the original triangle.



EXAMPLE 4:

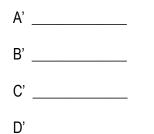
a) Graph points T(0,3), U(2, 4) and V(5, -1) and connect the points to make a triangle.


b) Translate $\triangle TUV$ using the rule $(x, y) \rightarrow (x - 3, y - 1)$.

c) In words, describe what the rule is asking you to do.

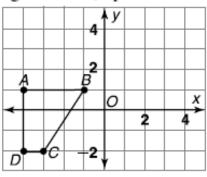
d) Draw the image $\Delta T'U'V'$.

e) Identify the coordinates of $\Delta T'U'V'$.

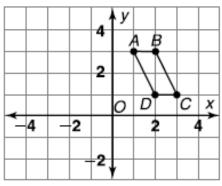

f) Using the image of $\Delta T'U'V'$ perform an additional translation using the rule

 $(x, y) \rightarrow (x + 3, y - 3)$. State the new coordinates of $\Delta T^{"}U^{"}V^{"}$. Is this new image congruent or similar to the original figure?

Name: _____ G8: Notes #1 – Transformational Geometry -Translations

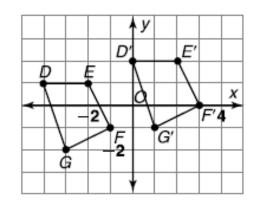

Practice:

- 1) a) Use arrow notation to write a rule for the given translation.
 - b) Graph and label the image after the translation.
 - c) Name the coordinates of the image.
 - A' _____ B' _____
 - C' _____ D' ____
- 2) a) Use arrow notation to write a rule for the given translation.
 - b) Graph and label the image after the translation.
 - c) Name the coordinates of the image.

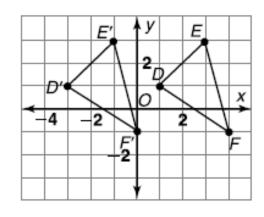


Date: _____ Class: _____

right 5 units, up 1 unit



left 3 units, down 2 units



In questions 3 and 4 below, use arrow notation to write a rule that describes the translation shown on the graph.

3)

Date:	
Class: _	

5) MULTIPLE CHOICE:

Write a description of the rule $(x, y) \rightarrow (x - 7, y + 4)$.

- (a) translation 7 units to the right and 4 units up
- (b) translation 7 units to the left and 4 units down
- (c) translation 7 units to the right and 4 units down
- (d) translation 7 units to the left and 4 units up