M8-U3: Notes #2 – Reflections

Date: _____ Class: _____

A **reflection** is a transformation which ______ the figure over a _____.

Example 1:

 $\triangle ABC$ is being reflected over the *x*-axis.

Draw and label the image $\Delta A'B'C'$.

We can use an arrow to describe this reflection.

$$\triangle ABC \rightarrow \triangle A'B'C'$$

What are the coordinates of:

A \rightarrow A' \longrightarrow

B_____ → B'_____

 $C _$ \rightarrow $C' _$

Write a general rule for an *x*-axis reflection:

$$(x, y) \rightarrow ($$
______, ____).

Tell me more about this figure, is it congruent or similar? Explain how you know.

Name:	Date:	
M8-U3: Notes #2 – Reflections	Class:	

Example 2:

 $\triangle ABC$ is reflected over the *y*-axis.

Draw the image $\Delta A'B'C'$.

What are the coordinates of:

Write a general rule for a <u>y-axis</u> reflection:

$$(x, y) \rightarrow (\underline{\hspace{1cm}}, \underline{\hspace{1cm}}).$$

Example 3:

- a) Draw $\triangle JKL$ which has coordinates J(0,2), K(3,4), and L(5,1).
- b) Draw the image $\Delta J'K'L'$ after a reflection of ΔJKL over the *x*-axis.
- c) List the coordinates of *J'K'L'*.

$$J \underline{\hspace{1cm}} (0,2) \longrightarrow J' \underline{\hspace{1cm}}$$

- d) Draw the image $\Delta J''K''L''$ after a reflection of $\Delta J'K'L'$ over the *y*-axis.
- e) List the coordinates of J"K"L".

- f) Describe a different combination of two reflections that would move ΔJKL to $\Delta J''K''L''$.
- g) Is this new image congruent or similar to the original figure?

Example 4:

- a) Draw $\triangle ABC$ which has coordinates A(0,1), B(3,4), and C(5,1).
- b) Draw the image ΔA'B'C' after a reflection of $\triangle ABC$ over x = -1.
- c) List the coordinates of A'B'C'.

$$A \underline{\hspace{1cm}} (0, 1) \rightarrow A' \underline{\hspace{1cm}}$$

Example 5:

- a) Draw $\triangle ABC$ which has coordinates A(0,1), B(3,4), and C(5,1).
- b) Draw the image $\Delta A'B'C'$ after a reflection of ΔABC over y = -2.
- c) List the coordinates of A'B'C'.

$$A \underline{\hspace{1cm} (0,1)} \rightarrow A' \underline{\hspace{1cm}}$$

Example 6:

Draw the line of reflection which caused rectangle *KLMN* to reflect onto rectangle *K'L'M'N'*. What is the equation of the line of reflection?

Example 7:

Draw the line of reflection which caused triangle *ABC* to reflect onto triangle *A'B'C'*. What is the equation of the line of reflection?

Name:	Date:
M8-U3: Notes #2 – Reflections	Class:

Example 8:

Quadrilateral *CDEF* is plotted on the grid below.

On the graph, draw the reflection of polygon *CDEF* over the *x*-axis. Label the image *C'D'E'F'*.

Now create polygon C'D'E'F' by translating polygon C'D'E'F' three units to the left and up two units. What will be the coordinates of point C''?

A		
Answer		

Example 9:

Describe how you could move shape 2 to exactly match shape 2' by using one translation and one reflection.

