\qquad Class: \qquad

Date: \qquad

Dilation - transformation that produces an image that is the \qquad as the original but \qquad .

- A dilation is \qquad to the original figure.
- Dilations are centered around the origin $(0,0)$, unless otherwise stated.

Scale factor - is $\frac{\text { image length }}{\text { pre-image length }}$, which is a \qquad .

- If the scale factor is greater than 1, the figure becomes \qquad .
- If the scale factor is between 0 and 1 , the figure becomes \qquad .

Rule: $(x, y) \rightarrow(f x, f y)$ where f represents the scale factor.
Example 1: If the scale factor is 3, how would you write the rule?

Example 2:

Triangle $A B C$ has vertices $A(0,2), B(4,4)$, and $C(-1,4)$.
What are the vertices of its image with a scale factor of 4 ?
\qquad Class: \qquad

M8-U3: Notes\# 3 - Dilations

Date: \qquad

Example 3:

Quadrilateral $P Q R S$ has vertices $P(-2,4), Q(4,4), R(4,-2)$, and $S(-4,-4)$. It is dilated by a scale factor of $1 / 2$.
a) What are the coordinates of the image? Graph them.

b) Demonstrate these quadrilaterals are similar by comparing the ratios of the lengths.
c) What do you notice about the angle measurements of the two figures?
\qquad Class: \qquad
\qquad

Example 4:

If the scale factor is $\frac{5}{2}$, how would you write the general rule?
Is this an enlargement or a reduction?

Example 5:

Quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a dilation of quadrilateral $A B C D$. Find the scale factor.
Classify the dilation as an enlargement or a reduction.

\qquad Class: \qquad

M8-U3: Notes\# 3 - Dilations
Date: \qquad

Example 6:

Triangle $X Y Z$ is graphed below. Draw and label Triangle $X^{\prime} Y^{\prime} Z^{\prime}$ after a dilation using a scale factor of two.

What will be the coordinates of point $Y^{\prime \prime}$ after a reflection of polygon $X^{\prime} Y^{\prime} Z^{\prime}$ over the x axis?

Answer \qquad

